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Abstract. The theory by Cross and Fisher (CF) is by now commonly accepted for the description of the
spin-Peierls transition within an adiabatic approach, involving however a continuum approximation for
the relevant response function. Using density matrix renormalization group (DMRG) techniques we are
able to treat the spin system on the lattice exactly up to numerical inaccuracies. Thus we find the correct
dependence of the equation of state on the spin-spin interaction constant which in the CF theory drops
out completely. With respect to CuGeO3 we focus on the pressure dependence of the critical temperature
and analyze the ratio of the spectral gap and the transition temperature.

PACS. 75.10.Jm Quantized spin models – 75.50.Ee Antiferromagnetics – 75.40.Cx Static properties (order
parameter, static susceptibility, heat capacities, critical exponents, etc.)

1 Introduction

Low dimensional quantum systems are currently of con-
siderable interest mainly due to the fascinating phase
transitions driven by strong quantum fluctuations. The
continuous interest from the theoretical side is provoked
by the discovery of many experimental systems realizing
quasi one-dimensional quantum systems. In the field of
spin-Peierls systems the discovery of the inorganic com-
pound CuGeO3 realized a milestone as many measure-
ments have been performed with high accuracy since.
Therefore, CuGeO3 has attracted much attention in ex-
perimental as well as in theoretical works. The high tem-
perature behaviour of CuGeO3 was found to be mod-
elled adequately by one-dimensional frustrated Heisenberg
chains [1–4]. In the dimerized phase, many features were
shown to be consistent within an adiabatic description
of the phonon degrees of freedom. This observation com-
prises zero temperature [5–8] as well as thermodynamic
properties [2,4].

Even in one space dimension only a few exact re-
sults exist, particularly concerning thermodynamics. For
integrable systems the thermodynamical potentials and
asymptotic behaviour of correlation functions are known.
A notorious problem is posed by response functions
and non-integrable systems in general. With respect
to this, the recently developed transfer matrix DMRG
(TMRG) [9–11] on the basis of transfer matrices [12]
provides a very powerful method to calculate thermody-
namic quantities of spin chains without any use of pertur-
bative methods. This has been demonstrated in several
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applications [4,11,13–17]. The first description of the
spin-Peierls transition and thermodynamics beyond a con-
tinuum limit was given in [2] on the basis of exact diag-
onalization. The present TMRG method allows for a sys-
tematic enhancement with respect to finite size effects for
the important low temperature regime [4].

In this paper we study the influence of microscopic
coupling constants on the spin-Peierls transition temper-
ature. This allows for an understanding of the consid-
erable pressure dependence of the phase diagram along
the following line of reasoning. It is known that exter-
nal pressure affects the magnetic properties of CuGeO3

considerably [3,18,19]. Fits for the magnetic susceptibility
yield the change of the nearest-neighbour spin interaction
J and estimates for the frustration parameter α. Using
these data for J as function of pressure we are able to ex-
plain the observed increase of the spin-Peierls temperature
and estimate the pressure dependence of the next-nearest-
neighbour exchange.

The outline of the paper is as follows. In Section 2 we
present the model and a motivation for our description of
the experimentally studied spin-Peierls systems. We study
the static dimerization susceptibility in Section 3. Sec-
tion 4 is devoted to the computation of the critical tem-
perature as a function of the spin exchange couplings and
external pressure, respectively. We give a comparison of
our results with experimental measurements. In Section 5
we investigate the spectral gap and its ratio to the spin-
Peierls temperature. The conclusion is given in Section 6.
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2 Model

In the inorganic spin-Peierls compound CuGeO3 the mag-
netic interactions are attributed to Heisenberg spin ex-
change. There is numerous evidence that in addition
to the nearest-neighbour interaction (J) a next-nearest-
neighbour exchange J ′ = αJ [1–3] with α = 0.35 has to
be taken into account. Usually the constant α is referred
to as frustration parameter.

At the spin-Peierls temperature the system undergoes
a structural phase transition driven by the quantum spin
system coupled to the phonons. The spin-phonon coupling
is modelled by spin exchange integrals depending linearly
on the local displacements. The adiabatic treatment yields
a quantum spin system coupled to just one phonon mode
with the commonly used Hamiltonian

Ĥ =
∑
i

{
J [(1 + δi)SiSi+1 + αSiSi+2] +

K

2
δ2
i

}
, (1)

where Si are spin 1/2 operators, δi = (−1)iδ denotes
the modulation of the magnetic exchange couplings in the
dimerized phase. Here, we restrict ourselves to vanishing
external magnetic field where the system shows a phase
transition from the uniform (U), i.e. δ = 0, to the dimer-
ized (D) phase (δ > 0).

The elastic energy can be expressed in terms of micro-
scopic constants rendering (1) equivalent to an RPA treat-
ment of the phonon propagator for the full spin-phonon
system. Within RPA the condition for the phase transi-
tion is identical to that for (1) as formulated in (4) below
if K is adjusted to the following value [20]

K =
J2

2

(∑
i

λ2
i

MiΩ2
i

)−1

=: CJ2. (2)

The sum runs over the spin-Peierls active modes. For each
mode i, Mi denotes the effective mass of the unit cell,
Ωi the frequency of the spin-Peierls active phonon and
λi the spin-phonon coupling constant. In particular, K
is proportional to J2. The constant C contains only the
microscopic parameters of the underlying lattice.

Our numerical investigations do not improve over those
of CF [21] with respect to the RPA treatment. However,
within the RPA approximation we deal with the complete
dynamics of the quantum spin system. Note that in refer-
ence [21] a continuum description of the spin system was
used with a subsequent bosonization treatment which is
believed to capture only the long distance asymptotics of
the correlation functions.

3 Response functions

The static dimerization susceptibility of the spin system
is defined by

Aα(x) = −J−1 lim
δ→0

∂2fα(x, δ)
∂δ2

, (3)
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Fig. 1. Depiction of the function xA(x) with x = T/J for:
free fermions, Heisenberg model in continuum limit (CF), and
TMRG results for frustration parameter α = 0, 0.241, 0.35. The
circles denote the relevant values for CuGeO3 (see text).

where x = T/J , and fα(x, δ) is the free energy per site for
system (1) with fixed dimerization δ, frustration α and K
set to zero. The response function A is nothing but the
correlation of the nearest neighbour spin exchange SiSi+1

(dimer operator) at momentum q = π and energy ω = 0.
The U/D phase transition takes place for

Aα(xSP) = K/J = CJ. (4)

For details the reader is referred to [4].
Let us now review the results obtained by CF. Within

the bosonization approach they find xAα=0(x) = χ0 with
χ0 ≈ 0.26. As a direct consequence by use of the inversion
of (4),

TSP = JA−1
α (CJ), (5)

this yields dTSP/dJ = 0. Of course, this is also clear from
the fact that the energy scale of the spin system com-
pletely drops out due to scale invariance.

Figure 1 shows a comparison of our TMRG results1 for
the function xAα(x) for various values of α with the find-
ings of CF and exact data for free fermions. The enormous
progress achieved by the numerical analysis is the correct
treatment of the spin system on the lattice at practically
all length scales. This improves over the continuum limit
approach in which the asymptotics of correlation functions
is incorrectly extended to short distances. For the unfrus-
trated Heisenberg model, i.e. α = 0, we are able to observe
directly the deviations between the continuum limit and
a lattice treatment of the spin degrees of freedom.

With respect to CuGeO3 we fix J by the require-
ment that the experimental magnetic susceptibility equals

1 We have used 24 states in the renormalization step and
have set the accuracy with respect to Trotter decomposition
to (TM)−1 = 0.05.
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that of the strictly one-dimensional model at the critical
point leading to J = 130K (α = 0), J = 150K (α ≈
αc ≈ 0.2412 [1,22,23]), J = 160K (α = 0.35), and
J = 350K (free fermions). The circles in Figure 1 denote
the values of xAα(x) at the experimentally determined
spin-Peierls temperature T 0

SP = 14.4 K for CuGeO3 (see
e.g. [24–26]). These values imply constants (cf. Eq. (4))
C0 ≈ 0.019 K−1 (α = 0), C0.241 ≈ 0.040 K−1 (α = 0.241),
C0.35 ≈ 0.070 K−1 (α = 0.35), and Cff ≈ 0.0027 K−1 (free
fermions).

For the unfrustrated model the value xSPAα=0(xSP)
almost coincides with the results of CF. However the
agreement happens only fortuitously since χ0 is a zero
temperature quantity. For other frustration parameters
qualitative and quantitative deviations from the CF-
line appear. The divergence of A(x) for free fermions,
Heisenberg model with α < αc, α = αc, and α > αc,
is log(x), 1/x × log. corrections [4,27], 1/x (see [22] and
references therein), and exponential [4], respectively. The
quantitative values for xSPA(xSP) also differ from each
other. We must conclude that it is risky to deduce quan-
titative results from the bosonization approach as already
pointed out by CF. For applications to CuGeO3 it is fur-
thermore uncertain if the pure Heisenberg chain can even
yield the qualitative results correctly. From the analysis
of the susceptibility data at higher temperature we are
led to favour the frustration parameter α = 0.35 [2–4]
for which the behaviour of the response function deviates
considerably from χ0/x.

4 Pressure dependence of the magnetic
system

From (5) it is straightforward to deduce the dependence of
the spin-Peierls temperature on the variation of the spin
coupling constants. The relation is valid for every fixed
value of α. We first focus on the system with α0 = 0.35 at
ambient pressure.

The dependence of J and α on the external hydrostatic
pressure have already been obtained from the relation
between magnetostriction and the pressure dependence
of the magnetic susceptibility χ [3]. From our TMRG
data we find ∂χ

∂ ln J �
∂χ
∂ lnα at constant temperature.

These two quantities appear in the following expression,
dχ
dp =

∑
i

∂χ
∂ lnxi

∂ lnxi
∂p , where x1 = J and x2 = α. There-

fore, we conclude the value for the pressure dependence
of J to be more reliable than that of α. The authors of
reference [3] deduced a value of d lnJ

dp = −7.0(5)%/GPa
using the relation between magnetostriction and pressure
dependences of J and α. Using in addition the experi-
mentally determined value for the pressure dependence of
the spin-Peierls temperature dTSP

dp ≈ 4.8 K/GPa [18] we
obtain the relation TSP(J) (thick black line in Fig. 2).

Due to the particular geometry involved in the super-
exchange mechanism we expect the magnetic exchange
energies to respond much more sensitively to the pres-
sure (bond-bending mechanism [28,29]) than the phonon
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Fig. 2. Variation of the spin-Peierls temperature versus the
relative change of the magnetic exchange coupling. The lines
show TMRG results for constant α and fixed C0.35. The thick
black line displays the experimental behaviour as an implicit
function of pressure. The dashed (dashed-dotted) line shows
the theoretical results for dJ ′/dp = 0 (dα/dp = 0). The cor-
responding dependences of α on the pressure are shown in the
inset.

frequencies or the spin-phonon coupling constants. We
therefore consider C as independent of pressure which ap-
plicability for CuGeO3 will break down at higher pressure.
The numerical results with C = C0.35 are shown in Fig-
ure 2. Obviously, a constant value of α = 0.35 (dashed-
dotted line) can not explain the observed behaviour, even
yielding a change of the critical temperature to opposite
direction.

From geometrical reasons we expect J ′ to be non-
decreasing. Assuming J ′ = constant to be realized, the in-
crease of TSP is too small by a factor of approximately 4 (as
displayed by the thick dashed line in Fig. 2). Consequen-
tially, the main effect must be a strong increase of J ′. The
deduced dependence of α on the hydrostatic pressure fits
well with d lnα

dp = 24± 2%/GPa (or d lnJ′

dp = 17± 2%/GPa
respectively) up to about 1.4 GPa as displayed in the
inset of Figure 2. The error was determined assuming
that the value of dTSP

dp involves an error of ±0.5 K/GPa,
where the uncertainty in d ln J

dp only plays a secondary
role. In general, already the weak requirement that J is
non-increasing with hydrostatic pressure gives a minimum
pressure dependence of d lnα

dp ≥ 20%/GPa. The pressure
dependence of α has already been investigated in refer-
ence [3], however, with large error bounds which are re-
spected by our results. The divergence of d lnα

dp at a finite
pressure or in other words, an upper limit of the crit-
ical temperature, is a physical prediction of the chosen
one-dimensional approach. It is mostly based on a limited
spontaneous gap as a function of α. But as already men-
tioned above, we expect an agreement with CuGeO3 only
in the low pressure region.
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Table 1. Pressure dependences of the spin system parame-
ters and the spin-Peierls temperature as explained in the text.
Numbers in bold face denote results obtained by our DMRG
calculations, all other quantities were used as input data. Note
that models based on free fermions or unfrustrated Heisenberg
chains can not explain the rather large pressure dependence of
the critical temperature.

d lnJ
dp [%/GPa] d lnα

dp [%/GPa] dTSP
dp [K/GPa]

free fermions ≈ −6 (0) ≈1.8

α = 0 ≈ −5 (0) ≈0.3

α0 = 0.35 −7.0± 0.4 24±2 4.8± 0.5

A similar analysis can be done on the basis of the un-
frustrated Heisenberg model and free fermions. Evaluating
the magnetic susceptibility data of Takahashi et al. [18] we
derive d ln J

dp ≈ −5%/GPa (α = 0) and d ln J
dp ≈ −6%/GPa

(free fermions). In contrast to the frustrated case, a change
of α under pressure for these initially unfrustrated models
is not reasonable. The deduced theoretical decrease of the
critical temperature is too small by a factor of about 3 for
free fermions (or equivalently Hartree-Fock calculations),
in the case of the unfrustrated Heisenberg model even by
a factor of ≈ 15 (see Tab. 1).

We must conclude that neither the unfrustrated
Heisenberg model nor Hartree-Fock results are able to
describe the physics of CuGeO3 correctly. In contrast to
this a Heisenberg model with parameters α0 = 0.35 and
d lnα

dp = 24%/GPa turns out to reproduce the experimen-
tal findings up to about 1.4 GPa.

5 “BCS-ratio”

Another interesting quantity is the ratio of the singlet-
triplet gap to the spin-Peierls temperature, known as
“BCS-ratio”. Combining the TMRG data for A with zero
temperature DRMG calculations for the singlet-triplet
gap as a function of α and the dimerization one gets a
relation between ∆ST and TSP. The results are shown in
the bottom section of Figure 3.

Using the scaling of A [4], the definition of the critical
temperature and the dependence of the ground state en-
ergy on small saturation dimerizations δ0 = δ(T = 0) one
finds

δ0 ' TSP
3/2 exp(−∆

0
ST

2
/TSP), (6)

ignoring logarithmic corrections for α < αc. Here ∆0
ST de-

notes the singlet-triplet gap for vanishing dimerization,
which is zero for α ≤ αc. In the next step we apply
∆ST−∆0

ST ' δ
2/3
0 [30,31] to derive an explicit asymptotic

relation between the gap and the spin-Peierls temperature,

∆ST −∆0
ST ' TSP exp(−∆

0
ST

3
/TSP), (7)
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Fig. 3. Bottom: Singlet-triplet gap ∆ST as a function of the
spin-Peierls temperature. Symbols denote the DMRG results,
the solid line shows the exact result for free fermions. The thin
lines show the expected behaviour from the scaling of A (see
text). Top left: Ratio of the spin gap and spin-Peierls tempera-
ture (“BCS ratio”). Top right: “BCS ratio”, experiment versus
theory.

again neglecting logarithmic corrections for α < αc. The
thin lines in Figure 3 show fits according to equation (7)
in the range up to T/J = 0.15. For α = 0.5 we used the
known value ∆0

ST = 0.2338J [32,33], hence only performed
a one-parameter fit in the presented region. For α = 0.35 a
spontaneous gap of ∆0

ST = 0.035J is used, also derived by
T = 0 DMRG. For α = 0 the predicted linear behaviour
(cf. (7)) can not be seen due to the logarithmic correc-
tions. A linear extrapolation of our data points shows a
positive offset. However, this is consistent with the pres-
ence of logarithmic corrections since we expect a zero limit
at T = 0 with infinite slope. The free fermions show the
well known behaviour ∆ST/TSP ≈ 1.76. We now derive the
“BCS-ratio” as a function of the spin-Peierls temperature
simply by dividing by TSP (upper left of Fig. 3). Firstly we
observe that the Heisenberg like models have a distinctly
larger “BCS-ratio” than free fermions.

For comparison to experiment we again fix the con-
stant C. Furthermore, the pressure dependence of J and
the frustration derived in Section 4 is taken into account
here. The results are shown in the top right of Figure 3.
Interestingly, the experimental result [18] compares well
with the low temperature asymptotics for free fermions
but showing a pronounced increase with pressure which
is not reproduced. From the investigations in reference [4]
we already know for Heisenberg models that the gap and
therefore the “BCS-ratio” is larger than the experimen-
tally observed one. This happens due to the strictly one-
dimensional treatment of CuGeO3 , i.e. the neglect of the
dispersion perpendicular to the chain, which will lower
the true gap. The unfrustrated chain even yields a qual-
itatively incorrect tendency of a decreasing “BCS-ratio”
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under pressure the appropriately frustrated system is at
least able to explain the increase.

6 Conclusion

The TMRG analysis of the spin-Peierls phase transition
allows a complete treatment of the quantum dynamics.
In contrast to continuum descriptions correlations are re-
spected at all length scales, which leads to the exact re-
sponse functions. Within the scope of an adiabatic descrip-
tion, equivalent to RPA as in the CF theory, we are able to
study the influence of the spin-spin exchange energy scale
J on the critical temperature. We like to emphasize that
these results are a non-trivial improvement over the CF
theory which shows no dependence on J at all. Moreover,
frustrated models can be investigated as well.

Using the pressure dependence of J it is possible to
study the dependence of the spin-Peierls temperature on
pressure. Neither Hartree-Fock calculations nor the un-
frustrated Heisenberg chain yield the strong increase as
measured. Once again, our investigations favour a frustra-
tion of α = 0.35 for CuGeO3 at ambient pressure. We find
a rather strong dependence of the frustration on pressure,
d lnα

dp = 24±2%/GPa, which agrees with earlier studies [3].
The analysis of the “BCS-ratio” also gives a clear indi-

cation that frustration is present in CuGeO3 , even though
some quantitative deviations can only be explained by
residual perpendicular couplings. There is evidence for a
strong dependence of α on pressure from the “BCS-ratio”.
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The work was supported by the Deutsche Forschungsgemein-
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